USATF ROAD RUNNING TECHNICAL COUNCIL APPLICATION FORMS FOR COURSE CERTIFICATION

Table of Contents

Steel Taping Data Sheet 2
Application for Certification of Calibration Course. 3
Bicycle Calibration Data Sheet 4
Course Measurement Data Sheet. 5
Application for Certification of a Road Course 6-8

This document contains all the forms you'll need to apply for USATF/RRTC course certification. The above table of contents can help you print only the pages containing the forms needed on a particular occasion. For example, if you're just measuring a calibration course, you'll need the Steel Taping Data Sheet and the Application for Certification of Calibration Course (pages 2-3). If you already have a calibration course and you're just measuring a road course, you'll need the Bicycle Calibration Data Sheet, Course Measurement Data Sheet, and Application for Certification of a Road Course (pages 4-8).

These forms should be sent to the RRTC Course Certifier in your State. The current list of certifiers can be found on the RRTC website at http://www.rrtc.net/ or you may obtain this information by phoning RRTC Chairman Gene Newman at 520-904-7805.

You'll probably have to send a processing fee along with your application. These fees vary from State to State, so we can't tell you how much to send. Check with your Certifier to determine the proper fee before sending in the application! (Note: there is no fee for certifying a calibration course.)

Date of this revision: June 14, 2015

STEEL TAPING DATA SHEET (for measuring a calibration course or track)

Name of Calibration Course \qquad
City and State \qquad Date \qquad
Start Time \qquad Finish Time \qquad
Pavement Temperature: Start \qquad Finish \qquad Average \qquad (Thermometer shaded from direct sun)

Measurements and Calculations:

1. First Measurement. This establishes tentative start and finish marks which should not be changed until the final adjustment on line 6 below.
\# tape
\qquad tape length $+$ \qquad = \qquad lengths length
2. Second Measurement. This checks the distance between the SAME tentative start and finish points marked in the first measurement, but use new intermediate taping points.
\# tape
lengths
\times \qquad $+$ \qquad = \qquad

Note: Tape measurements should agree within $\mathbf{0 . 0 1 \%}$ (for example, 3 cm for a 300 meter course). If not, do more measurements until agreement at this level is obtained.
3. Average Raw (uncorrected) Measurement of Course \qquad
4. Temperature Correction. Use the average pavement temperature during measurement in whichever formula is appropriate (for Celsius or Fahrenheit temperature). Work out answer to at least seven digits beyond the decimal point.

Correction factor $=\left(\left[\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)-20\right] \times .0000116\right)+1.0000000$
Correction factor $=\left(\left[\operatorname{Temp}\left({ }^{\circ} \mathrm{F}\right)-68\right] \times .00000645\right)+1.0000000$
Correction factor =

NOTE: For temperatures below $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, factor is less than one For temperatures above $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, factor is greater than one
5. Multiply the temperature correction factor by the average raw measurement of the course (line 3)

6. If you wish, you may now adjust the course to obtain an even distance, such as 300 meters (not applicable if measuring a track). This is not necessary as you may choose instead to use an odd-distance calibration course whose endpoints are pre-existing permanent objects in the road to guard against hazards such as repaving. If you adjusted the course, explain what you did.

Final Adjusted Length of Calibration Course
CONVERSION FACTORS: 1 foot $=0.3048$ meters
300 meters $=984.25$ feet
1 kilometer = 1000 meters $=3280.84$ feet

APPLICATION FOR CERTIFICATION OF CALIBRATION COURSE

1. Name of Calibration Course \qquad
2. Length of Calibration Course \qquad
3. City and State \qquad
4. Date(s) Measured \qquad
5. Method Used to Measure Calibration Course
6. How many times did you measure the calibration course? \qquad
7. Measuring Team Leader: \qquad , \qquad
(Name)
(Telephone \#)
(Address)
(E-mail address)
8. List Names and Duties of Team Members:
9. Submit a map of this calibration course, showing direction of north, the name of the road (and relevant cross streets), and the exact locations of start and finish points, including taped distances from nearby permanent landmarks.
10. Is this calibration course: STRAIGHT? \qquad PAVED? \qquad
11. How are the start and finish points marked? \qquad
12. Are the start and finish points located in the road where a bicycle wheel can touch them or elsewhere?
13. Approximate altitude of calibration course (meters or feet - specify which) \qquad
Mark endpoints in a permanent way (concrete or P-K nails). Paint will fade. The calibration course, once certified, can be used to measure many courses. TAKE CARE OF IT!
14. If the calibration course was measured by Electronic Distance Meter (EDM), describe on a separate sheet the exact procedures used, the make and model of the EDM device, and the qualifications of the person operating the EDM (preferably a licensed surveyor); also include a copy of the original field notes from the measurement.
15. If the calibration course was measured by steel tape, fill out a copy of the steel taping data sheet and complete the following:
16. How much tension (force) was applied to the tape while measuring? \qquad
17. How was this tension maintained? \qquad
18. Was the tape free of any kinks, crimps or splices? \qquad
19. Bicycle Check. This is a check against miscounting the number of tape lengths. (If you used a gross measurement check other than a bicycle, please explain.)
A. Counts for full calibration course
B. Counts for one tape length
C. Divide A by B
D. Number of full tape lengths
\qquad
\qquad
\qquad
\qquad

BICYCLE CALIBRATION DATA SHEET

Date of Measurement \qquad
Name of Measurer \qquad
Length of calibration course \qquad

1. Ride the calibration course 4 times, recording data as follows:

Ride Start Count Finish Count Difference
Pre-measurement
Average Count \qquad
Time of Day \qquad
Temperature
Note: The spread shouldn't exceed 2 to 3 counts for riding each direction of the calibration course.
WORKING CONSTANT = Number of counts in one kilometer or one mile, calculated from Pre-measurement average count, and multiplied by 1.001 "safety factor."
Working Constant =
2. Now, measure the course, including all intermediate distances, using the working constant. Enter data on the "Course Measurement Data Sheet."
3. Recalibrate the bicycle by riding the calibration course 4 times, recording data as follows:

Ride Start Count Finish Count Difference
Post-measurement
Average Count \qquad
Time of Day \qquad
Temperature
Note: The spread shouldn't exceed 2 to 3 counts for riding each direction of the calibration course.
FINISH CONSTANT = Number of counts in one kilometer or one mile, calculated from Post-measurement average count, and multiplied by 1.001 "safety factor."
Finish Constant =

CONSTANT FOR THE DAY = Either the Working Constant or the Finish Constant, whichever is the larger*. Constant for the Day = \qquad
Remember, each day's measurement must be preceded and followed by a calibration run. You may measure as much as you want in a day, just so calibration precedes and follows it in the same 24 hour period. This is done to minimize error due to changes in tire pressure from thermal expansion and slow leakage. Frequent calibration "protects" the previous measurement. A smart measurer will recalibrate frequently-you never know when a flat tire is coming!

CONVERSION FACTOR: 1 mile $\mathbf{= 1 . 6 0 9 3 4 4}$ kilometers

* You may, if you wish, define your "Constant for the Day" as the average of Working and Finish constant instead of the larger. However, if you use the average, you will produce a shorter race course, which will face a greater risk of being found short if it ever needs to be verified. Therefore, use of the larger constant is strongly recommended.

Name of Course or Race Name
Name of Measurer for ride \#1 ___
\qquad
Date \qquad Start: Time \qquad Temperature \qquad
Finish: Time \qquad Temperature \qquad
Name of Measurer for ride \#2 \qquad Working Constant \#2 \qquad
Date \qquad Start: Time \qquad Temperature \qquad
Finish: Time \qquad Temperature \qquad
Measurement Data. Use the first measurement ride to lay out the start/finish points and all intermediate split points. Use the second ride to record counts at those same points. Do not lay out a second set of marks!

Measured
Point

Counts for Measurement \#1
Recorded Interval

Counts for Measurement \#2
Recorded Interval

Preliminary Course Length	start-to-finish counts		divide by	working constant	$=$	measured length
Measurement \#1			1		=	
Measurement \#2			1		=	
Difference between lengths \#1 and \#2	divide by	length \#1		$=\quad \mathrm{Me}$		
	1			$=$		(___)

IMPORTANT. Before you leave the course, compare the two measurements. They should agree to within 0.08%. If the two preliminary measurements do not agree to within 0.08%, something is wrong. Fix it! Then go to the calibration course and recalibrate.

If either of the Constants for the Day (for measurement \#1 or \#2) is not the same as the Working Constant for that measurement, recalculate the length of the course here:

Final Course Length	start-to-finish counts	divide by	constant for day		$=$
Measurement \#1		1		length of course	
Measurement \#2			$=$		

The length of the race course is the lesser of the two lengths calculated above.
Measured course length \qquad . Desired course length \qquad
Use a steel tape to add or subtract distance as required to bring the minimum length to the same value as the desired course length.

Adjustment applied: How much, and in what direction, did you move relevant points (start, finish, turn-around), and how much did this change the course distance? Include a diagram if necessary to make this totally clear.

Note: you need not adjust intermediate split points unless certification is desired for those points as well. Did you adjust the intermediate points and, if so, how?

APPLICATION FOR CERTIFICATION OF A ROAD COURSE The Calibrated Bicycle Method

1. Name this Course will be Known By
2. Advertised Race Distance \qquad Race Date \qquad
3. Location of Start \qquad Finish (if different) \qquad
City, State
City, State
4. Measurer Contact Info (must be someone who actually rode the bike):

> (E-mail address)
5. Race Contact (if course is measured for a specific race):

(Name)	(Address)	(Zip)

6. If this course replaces an older course that has changed physically (e.g., due to construction) and is no longer usable as certified, please give certification code of the old course that is no longer usable:

CALIBRATION OF BICYCLE
7. Did you calibrate the bicycle on a previously certified calibration course? \qquad (YES or NO)

If YES, please enter the calibration course's certification number \qquad or enclose a copy of the certificate and map verifying RRTC certification of the calibration course. If NO, you must enclose an Application for Certification of Calibration Course.
8. Is your bicycle calibration data sheet attached? \qquad (YES or NO)
9. Did you include the factor of 1.001 in your calibration constant? \qquad (YES or NO)

SUMMARY OF MEASUREMENTS

10. Date(s) of measurements \qquad
11. How many measurements of the course were made? \qquad
12. Name(s) of measurer(s) \qquad
13. Exact length of course \qquad
14. Difference between longest and shortest measurements \qquad
15. Which measurement was used to establish the final race course and WHY?
16. Is your course measurement data sheet attached? \qquad (YES or NO)
COURSE LAYOUT AND MARKING
17. Is your course map attached? \qquad (YES or NO)
NOTE: The course map need not be to scale but must indicate direction of north. It must be black \& white and fit on 8.5×11 paper. Descriptions of the exact positions of the start, finish, and all turn-arounds relative to permanent landmarks must be included on the map. Details of any restricted portions where cones and monitors are required must be detailed. Include a line representing the actual measured path.
18. List all intermediate splits (attach list describing the position of each relative to permanent landmarks).

APPLICATION FOR CERTIFICATION OF A ROAD COURSE The Calibrated Bicycle Method (continued)

19. How far from the curb (edge of pavement) did you measure on curves? \qquad
20. How much road width is available to runners throughout the length of the course? \qquad
21. If your course contains pairs of opposite turns (right-to-left or left-to-right), did you follow the shortest diagonal path?
\qquad (YES or NO)
Be sure your map shows the exact measured path.
22. Does your course contain any turn-around (double-back) points? \qquad (YES or NO) If YES, show them on course map, located exactly.
23. Does your course include any winding or " S " curved sections? \qquad (YES or NO) If YES, be sure your map makes it clear how you measured.
24. Did you measure an unrestricted route? Do the runners have use of the entire road, from curb to curb?
\qquad (YES or NO)
If your course requires cones or barriers to keep runners on the proper route, be sure your map shows their exact locations, just as you would locate the start and finish.
25. Type of coures (check one):

26. Straight-Line Distance (as the crow flies) between Start and Finish \qquad
27. Altitude of Race Course above mean sea level (meters or feet - please specify which!): start \qquad finish \qquad highest \qquad lowest \qquad
28. Type of surface (give percentages):
\qquad paved \qquad grass
\qquad
\qquad track
\qquad gravel

If your course includes any unpaved sections, please attach a detail of the method(s) used to measure such sections.
29. Have you included your start, finish and turn-around (if applicable) diagrams on your map?
(YES or NO)
30. How did you mark the start and finish points (and turn-around points)?
31. Did the same person ride the bicycle on both the calibration course and the race course for any given measurement?
\qquad (YES or NO)
32. Describe weather conditions during the calibration and measurement rides:
33. Did you perform both the pre-measurement and post-measurement calibrations and the measurement of the race course on the same day?
\qquad (YES or NO)

APPLICATION FOR CERTIFICATION OF A ROAD COURSE The Calibrated Bicycle Method (continued)

34. Provide an overview below of the processes and procedures you followed when undertaking this measurement.
(Here, you can describe any special circumstances that may help a certifier to understand what you did. Examples include portions of the course measured on different days or in different directions, needs for offsetting on parts of the course, etc. Your description may be short and sweet or as detailed as you wish. You may attach additional sheets if necessary.)
